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LETTER TO THE EDITOR 

Binding of a domain wall in the planar Ising ferromagnet 

D B Abraham 
CERN, Geneva 

Received 10 July 1981 

Abstract. A line of weakened bonds in the interior of a planar Ising ferromagnetic lattice 
always binds a domain wall. Thus there is no roughening transition in this case, in contrast to 
the situation with weakened bonds in the surface of a half-planar lattice. 

Consider a planar Ising ferromagnet which is characterised by spins ~ ( i )  = *1 placed at 
all points (il, i2) of a subset A of Z2, the infinite square lattice with unit side. The energy 
of a spin configuration {U} on A is given by 

where the J ( k )  are non-negative couplings and the h( i )  are magnetic fields. We shall 
denote J ( ( 0 ,  1)) = 3 2 ,  J((1,O)) = JI. 

The probability of the configuration {U} is given by 

PA({uI) = 2,' ~XP[-PE~({UHI (2) 
for equilibrium with a heat bath at absolute temperature T with p = l / k B T ,  k B  being 
the Boltzmann constant. It will be convenient to use the notation Ki = pJi, j = 1,2 ,  
hereafter. 

It is known that, if ( ),,(h, T )  denotes expectation with respect to (2), then provided 
T T,, where T, solves sinh 2K1 sinh 2K2 = 1, and H ( i )  = h, then (Peierls 
Dobrushin 1968, Griffiths 1964, Martin-Lof 1972, Yang 1952, Bennettin et a1 
Abraham and Martin-Lof 1973) 

lim lim ( c r ( O , O ) ) A ( h ,  T )  = m* 
h+O+ A-cO 

where 
-2  114 m" = [l- (sinh 2K1 sinh 2K2) I . 

1936, 
1973, 

(3) 

(4) 

This is, of course, the phenomenon of spontaneous magnetisation. The same limiting 
result is obtained by taking all h( i )  = 0, except on the boundary aA where h ( i )  = CO and 
thus only configurations with cr(i) = +1 on ah are significant in (2). In both cases, A-, CO 

means (0,O) becomes infinitely far from the boundary. The notion of regulating the 
state of a system by controlling its periphery in the infinite volume limit is perhaps 
surprising. It is clarified by considering the low-temperature expansion: evidently 
configurations with neighbouring antiparallel spin pairs are disfavoured. To keep track 
of such pairs, on the lattice A* ={i+(;,i), i € A c Z 2 }  draw a unit line segment 
symmetrically, but perpendicular to the vector separating any antiparallel pair of 

0305-4470/81/090369 + 04$01.50 @ 1981 The Institute of Physics L369 



L370 Letter to the Editor 

neighbouring spins on A. Then, with a(i)  = +l on aA there is a 1 : 1 correspondence 
between spin and contour configurations, with the proviso that 0, 2 or 4 contour 
elements meet at any vertex of A*. Let a typical contour configuration on A* have L, 
(respectively L,) contour elements in the (1,O) (respectively (0 , l ) )  direction; then the 
Boltzmann weight is exp[-2(K1L, + K2L,)]. At  low temperatures the contours behave 
somewhat like a dilute gas. The probability of at least one contour going round the 
point (0,O) can be bounded below t (Dobrushin 1968, Griffiths 1964, Gallavotti 1972), 
verifying (3) provided T is small enough. 

In order to study the separation of phases, boundary conditions 3;- on the lattice 
A = {(il, i 2 ) :  -N S il S N - 1, -M S iz S M  - 1) are specified so that a(i) = 1 (respec- 
tively -1) for i E aA whenever i2 2 0 (respectively <O). As A + a, we anticipate a phase 
of magnetisation +m* (respectively -m*) far above (respectively below) the line iz  = 0. 
From symmetry considerations, the incremental free energy for the associated domain 
wall should be defined as 

where 31 denotes all boundary spins up. 
The profile, or domain wall structure, can be investigated in terms of the function 

F(Y, N )  = M - a ,  lim M O ,  Y ))&:do, T )  (6) 

and its limiting behaviour. The following results have been obtained (Abraham and 
Reed 1974, 1976): 

(7) 7 = 2K2 + lg tanh K1 

and 

with 

N-m lim F(aN112, N )  = m* sgn cy @(blcyI) (9) 

where 

b = (sinh T sinh 2Kllsinh ~ K Z ) ' ' ~  

and 

2 "  
J, o 

@ ( x )  = - exp(-u2) du. 

Evidently, the domain wall undergoes large fluctuations. Some insight is obtained by 
taking the solid-on-solid ( S O S )  limit K2+ a (Temperley 1952); then every vertical line 
( n  +;, y)  drawn on A" is intersected by one and only one contour element, which 
therefore belongs to a long contour with ends at ( -N  +$, -1) and (N  +;, -4) on A. This 
long contour may be identified uniquely with the domain wall. The probability of 
shapes of y is an elementary matter using Markovian methods. Equations (8), (9) and 
(11) are regained with m* = 1, but (10) is replaced by bsos = 2 sinh Kz. 
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The SOS limit renders the structure of a pure phase trivial. However, there is some 
evidence that the interface profile has a local structure varying on the scale of the 
correlation length, the centroid of which fluctuates (Abraham 1981). If we assume that 
the change from m* to -m* is infinitely sharp at the domain wall, then the profile 
function for the SOS model should be 

FSOS(y ,N)=m*[PN(Z<Y)-PN(Z (12) 
where z is the unique intercept y makes with the line x = 0. This gives (8) and (9) with 
the correct m* for a bulk phase. But bsos only agrees to first order in e-2K with b. 
Consequently deductions about the domain wall fluctuations based on the SOS model 

should be made with some caution. 
A question of some theoretical importance is the role played by imperfections in 

reducing domain wall fluctuations. Experimentally, this might correspond to the 
pinning of domain walls by dislocations, for instance. This Letter gives the exact results 
for the incremental free energy and boundary profile which obtain when the vertical 
bond strengths between lines y = -1 and y = 0 are reduced from K1 to KO (in units of 
k B T ) .  With boundary condition ai-, configurations will be favoured with the largest 
number of horizontal contour segments lying on the line y = 0 of A*. This obviously 
damps fluctuations and must be balanced against the concomitant reduction in entropy. 
In the SOS limit, with KO = K1 - E ,  K1+ CO, E > 0 (fixed) the domain wall always has 
bounded fluctuations, which diverge as E + 0 (Burkhardt 1981, Chalker 1981, Chiu and 
Weeks 1981, Hilhorst and van Leeuwen 1981). Even though the possibilities for the 
associated Ising model are considerably more subtle, the same type of result is obtained. 
Define y as the unique real solution of 

cosh2KT(cosh2K2eY-cosh2Kf) 

= -e-b[sinh2 2KT +eY(cosh y -cosh 2KT cosh 2K2)] (13) 

(14) 

where exp 2KT = coth K and 

eb = cosh 2Kl/cosh 2Ko. 

Note that (13) and (14) reduce to (21) of Chiu and Weeks (1981) in the SOS limit. 
Further, notice that y ( b )  - bl" as b + 0 and that y ( b )  = T when KO = 0 (recall (7)). The 
surface tension is given by T = y, but the profile is 

F(y ,  0;)) = sgn y{m*[l - A  ( Y ,  b)l+ hi ( Y ,  b )}  (15) 

where $I is the magnetisation associated with an identical bond perturbation, but 
a(i)  = +1 on the boundary. The function A (y, b )  is given in terms of a linear Fredholm 
problem, as is usual in this type of problem (Abraham 1981). Its asymptotic behaviour 
is A (y, b )  - exp(-ylyl) as y +*CO. Thus domain wall binding always occurs for b f 0. 

These results should be compared with the fluctuation damping of a domain wall 
near the surface of a half-planar lattice. In that case there is a phase transition at a 
temperature TR(Ko) (< T, whenever KO < K1) involving unbinding of the domain wall 
(Abraham 1980). This effect persists in the SOS limit, in its modification to exclude 
contour height jumps larger than one (Chiu and Weeks 1981) and even in a continuous 
height model which can be related, through its transfer operator, to a one-particle, 
one-dimensional Schrodinger problem with an attractive local potential. On the full 
line, corresponding to the full plane SOS problem, there is always a bound state, but on a 
half line only if the potential well is deep enough, which corresponds to low enough 
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temperature. Thus the phenomenon described is remarkably robust. Another worth- 
while observation is that 'sheet' models give a rather satisfactory qualitative account of 
the binding-unbinding transition. 

The author would like to thank the Theoretical Physics Division of CERN very much 
for their hospitality while this work was done, and in particular, to thank V Glaser lor 
explaining recent advances on the bound state problem for the Schrodinger equation 
for one particle. He  would like to thank J Chalker, S T Chiu and J D Weeks, and T W 
Burkhardt for communicating their results before publication. 
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